52 research outputs found

    SR-4000 and CamCube3.0 Time of Flight (ToF) Cameras: Tests and Comparison

    Get PDF
    In this paper experimental comparisons between two Time-of-Flight (ToF) cameras are reported in order to test their performance and to give some procedures for testing data delivered by this kind of technology. In particular, the SR-4000 camera by Mesa Imaging AG and the CamCube3.0 by PMD Technologies have been evaluated since they have good performances and are well known to researchers dealing with Time-of- Flight (ToF) cameras. After a brief overview of commercial ToF cameras available on the market and the main specifications of the tested devices, two topics are presented in this paper. First, the influence of camera warm-up on distance measurement is analyzed: a warm-up of 40 minutes is suggested to obtain the measurement stability, especially in the case of the CamCube3.0 camera, that exhibits distance measurement variations of several centimeters. Secondly, the variation of distance measurement precision variation over integration time is presented: distance measurement precisions of some millimeters are obtained in both cases. Finally, a comparison between the two cameras based on the experiments and some information about future work on evaluation of sunlight influence on distance measurements are reporte

    New instruments and technologies for Cultural Heritage survey: full integration between point clouds and digital photogrammetry

    Get PDF
    In the last years the Geomatic Research Group of the Politecnico di Torino faced some new research topics about new instruments for point cloud generation (e.g. Time of Flight cameras) and strong integration between multi-image matching techniques and 3D Point Cloud information in order to solve the ambiguities of the already known matching algorithms. ToF cameras can be a good low cost alternative to LiDAR instruments for the generation of precise and accurate point clouds: up to now the application range is still limited but in a near future they will be able to satisfy the most part of the Cultural Heritage metric survey requirements. On the other hand multi-image matching techniques with a correct and deep integration of the point cloud information can give the correct solution for an "intelligent" survey of the geometric object break-lines, which are the correct starting point for a complete survey. These two research topics are strictly connected to a modern Cultural Heritage 3D survey approach. In this paper after a short analysis of the achieved results, an alternative possible scenario for the development of the metric survey approach inside the wider topic of Cultural Heritage Documentation is reporte

    Anomalous screening of an electrostatic field at the surface of niobium nitride

    Full text link
    The interaction between an electric field and the electric charges in a material is described by electrostatic screening, which in metallic systems is commonly thought to be confined within a distance of the order of the Thomas-Fermi length. The validity of this picture, which holds for surface charges up to ∼1013 cm−2\sim 10^{13}\,\mathrm{cm^{-2}}, has been recently questioned by several experimental results when dealing with larger surface charges, such as those routinely achieved via the ionic gating technique. Whether these results can be accounted for in a purely electrostatic picture is still debated. In this work, we tackle this issue by calculating the spatial dependence of the charge carrier density in thin slabs of niobium nitride via an ab initio density functional theory approach in the field-effect transistor configuration. We find that perturbations induced by surface charges ≲1014 cm−2\lesssim 10^{14}\,\mathrm{cm^{-2}} are mainly screened within the first layer, while those induced by larger surface charges ∼1015 cm−2\sim 10^{15}\,\mathrm{cm^{-2}} can penetrate over multiple atomic layers, in reasonable agreement with the available experimental data. Furthermore, we show that a significant contribution to the screening of large fields is associated not only to the accumulation layer of the induced charge carriers at the surface, but also to the polarization of the pre-existing charge density of the undoped system.Comment: 8 pages, 4 figure

    Anomalous Metallic Phase in Molybdenum Disulphide Induced via Gate-Driven Organic Ion Intercalation

    Get PDF
    Transition metal dichalcogenides exhibit rich phase diagrams dominated by the interplay of superconductivity and charge density waves, which often result in anomalies in the electric transport properties. Here, we employ the ionic gating technique to realize a tunable, non-volatile organic ion intercalation in bulk single crystals of molybdenum disulphide (MoS2). We demonstrate that this gate-driven organic ion intercalation induces a strong electron doping in the system without changing the pristine 2H crystal symmetry and triggers the emergence of a re-entrant insulator-to-metal transition. We show that the gate-induced metallic state exhibits clear anomalies in the temperature dependence of the resistivity with a natural explanation as signatures of the development of a charge-density wave phase which was previously observed in alkali-intercalated MoS2. The relatively large temperature at which the anomalies are observed (∼150 K), combined with the absence of any sign of doping-induced superconductivity down to ∼3 K, suggests that the two phases might be competing with each other to determine the electronic ground state of electron-doped MoS2

    Two-dimensional hole transport in ion-gated diamond surfaces: A brief review

    Get PDF
    Electrically-conducting diamond is a promising candidate for next-generation electronic, thermal and electrochemical applications. One of the major obstacles towards its exploitation is the strong degradation that some of its key physical properties - such as the carrier mobility and the superconducting transition temperature - undergo upon the introduction of disorder. This makes the two-dimensional hole gas induced at its surface by electric field-effect doping particularly interesting from both a fundamental and an applied perspective, since it strongly reduces the amount of extrinsic disorder with respect to the standard boron substitution. In this short review, we summarize the main results achieved so far in controlling the electric transport properties of different field-effect doped diamond surfaces via the ionic gating technique. We analyze how ionic gating can tune their conductivity, carrier density and mobility, and drive the different surfaces across the insulator-to-metal transition. We review their strongly orientation-dependent magnetotransport properties, with a particular focus on the gate-tunable spin-orbit coupling shown by the (100) surface. Finally, we discuss the possibility of field-induced superconductivity in the (110) and (111) surfaces as predicted by density functional theory calculations

    Spectroscopic studies of the superconducting gap in the 12442 family of iron-based compounds

    Get PDF
    The iron-based compounds of the so-called 12442 family are very peculiar in various respects. They originate from the intergrowth of 122 and 1111 building blocks, display a large in-plane vs. out-of-plane anisotropy, possess double layers of FeAs separated by insulating layers, and are generally very similar to double-layer cuprates. Moreover, they are stoichiometric superconductors because of an intrinsic hole doping. Establishing their superconducting properties, and in particular the symmetry of the order parameter, is thus particularly relevant in order to understand to what extent these compounds can be considered as the iron-based counterpart of cuprates. In this work we review the results of various techniques from the current literature and compare them with ours, obtained in Rb-12442 by combining point-contact Andreev-reflection spectroscopy and coplanar waveguide resonator measurements of the superfluid density. It turns out that the compound possesses at least two gaps, one of which is certainly nodal. The compatibility of this result with the theoretically allowed gap structures, as well as with the other results in literature, is discussed in detail.Comment: 16 pages, 12 figure

    Integration between calibrated time-of-flight camera data and multi-image matching approach for architectural survey

    Get PDF
    In this work, the integration between data provided by Time-of-Flight cameras and a multi-image matching technique for metric surveys of architectural elements is presented. The main advantage is given by the quickness in the data acquisition (few minutes) and the reduced cost of the instruments. The goal of this approach is the automatic extraction of the object breaklines in a 3D environment using a photogrammetric process, which is helpful for the final user exigencies for the reduction of the time needed for the drawing production. The results of the performed tests on some architectural elements will be reported in this paper

    Multi-Valley Superconductivity In Ion-Gated MoS2 Layers

    Get PDF
    Layers of transition metal dichalcogenides (TMDs) combine the enhanced effects of correlations associated with the two-dimensional limit with electrostatic control over their phase transitions by means of an electric field. Several semiconducting TMDs, such as MoS2_2, develop superconductivity (SC) at their surface when doped with an electrostatic field, but the mechanism is still debated. It is often assumed that Cooper pairs reside only in the two electron pockets at the K/K' points of the Brillouin Zone. However, experimental and theoretical results suggest that a multi-valley Fermi surface (FS) is associated with the SC state, involving 6 electron pockets at the Q/Q' points. Here, we perform low-temperature transport measurements in ion-gated MoS2_2 flakes. We show that a fully multi-valley FS is associated with the SC onset. The Q/Q' valleys fill for doping≳2⋅1013\gtrsim2\cdot10^{13}cm−2^{-2}, and the SC transition does not appear until the Fermi level crosses both spin-orbit split sub-bands Q1_1 and Q2_2. The SC state is associated with the FS connectivity and promoted by a Lifshitz transition due to the simultaneous population of multiple electron pockets. This FS topology will serve as a guideline in the quest for new superconductors.Comment: 12 pages, 7 figure

    A model for critical current effects in point-contact Andreev-reflection spectroscopy

    Get PDF
    It is well known that point-contact Andreev reflection spectroscopy provides reliable measurements of the energy gap(s) in a superconductor when the contact is in the ballistic or nearly-ballistic regime. However, especially when the mean free path of the material under study is small, obtaining ballistic contacts can be a major challenge. One of the signatures of a Maxwell contribution to the contact resistance is the presence of "dips" in the differential conductance, associated to the sudden appearance of a Maxwell term, in turn due to the attainment of the critical current of the material in the contact region. Here we show that, using a proper model for the R(I)R(I) of the material under study, it is possible to fit the experimental curves (without the need of normalization) obtaining the correct values of the gap amplitudes even in the presence of such dips, as well as the temperature dependence of the critical current in the contact. We present a test of the procedure in the case of Andreev-reflection spectra in Mg0.75_{0.75}Al0.25_{0.25}B2_2 single crystals.Comment: 7 pages, 5 figure

    Strong band-filling-dependence of the scattering lifetime in gated MoS2 nanolayers induced by the opening of intervalley scattering channels

    Get PDF
    Gated molybdenum disulphide (MoS2) exhibits a rich phase diagram upon increasing electron doping, including a superconducting phase, a polaronic reconstruction of the bandstructure, and structural transitions away from the 2H polytype. The average time between two charge-carrier scattering events - the scattering lifetime - is a key parameter to describe charge transport and obtain physical insight in the behavior of such a complex system. In this work, we combine the solution of the Boltzmann transport equation (based on ab-initio density functional theory calculations of the electronic bandstructure) with the experimental results concerning the charge-carrier mobility, in order to determine the scattering lifetime in gated MoS2 nanolayers as a function of electron doping and temperature. From these dependencies, we assess the major sources of charge-carrier scattering upon increasing band filling, and discover two narrow ranges of electron doping where the scattering lifetime is strongly suppressed. We indentify the opening of additional intervalley scattering channels connecting the simultaneously-filled K/K' and Q/Q' valleys in the Brillouin zone as the source of these reductions, which are triggered by the two Lifshitz transitions induced by the filling of the high-energy Q/Q' valleys upon increasing electron doping.Comment: 10 pages, 6 figure
    • …
    corecore